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The x-ray scattering cross section from capillary waves at large values of the momentum transfer parallel to
the surface is discussed. In contrast to the conventional approach where only the height-height correlation of
the surface is taken into account the full-wave-motion-induced static correlations are embedded in the calcu-
lation. This leads to an increase in scattering intensity especially at large wave vector parallel to the sample’s
surface which has been interpreted as evidence for a wave-vector-dependent surface tension previously. We are
discussing under which conditions surface-sensitive x-ray scattering experiments can be used to derive the
surface Hamiltonian of capillary waves.
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I. INTRODUCTION

Currently there is considerable interest in small wave-
length fluctuations of liquid surfaces.1–4 At length scales
ranging from micrometers to 100 nm x-ray scattering experi-
ments proved that continuum hydrodynamics is a valid de-
scription of the surface fluctuations.5,6 At smaller length
scales the continuum theory is expected to break down and
details of the molecular interactions will be visible in the
capillary-wave fluctuations. Mecke and Dietrich7 used
density-functional theory to calculate the effective interfacial
Hamiltonian H�q�� for capillary waves at large wave-vector
transfers q� parallel to the liquid surface. They predict an
effective wavelength-dependent surface tension defined as
��q��=H�q�� /q�

2 which is a nonmonotonic function of q� re-
flecting both the intrinsic density profile of the liquid and the
interaction potentials.

In order to investigate the Mecke-Dietrich predictions a
number of researchers used grazing incidence x-ray diffrac-
tion �GID� on liquid surfaces to study capillary-wave excita-
tions at large values of the momentum transfer �q�

�10−2 Å−1� parallel to the surface.1–4 In such experiments
the incoming x-ray beam hits the sample’s surface under a
grazing angle smaller than the critical angle of external total
reflection. This leads to an x-ray penetration depth in the
sample of approximately 10 nm. Depending on the experi-
mental setup a very large q� range is accessible in such an
experiment. In our work scattering out of the scattering plane
defined by the surface normal and the incident beam is dis-
cussed, leading to wave-vector transfer parallel to the sample
surface between 10−3 Å−1 and approximately 3 Å−1. Thus,
correlations in the surface near scattering volume in a range
between micrometer and angstrom are accessible. The clas-
sical view of surface scattering from liquids is that the scat-
tering arises from the density contrast at the liquid-vapor
interface. This interface is modulated by capillary waves and
the scattering is therefore sensitive to the height-height fluc-
tuations of the interface. Referring to the small-angle-
scattering expressions of Sinha et al.8 the authors in Refs.
1–4 assumed that the scattering function S��Q� is directly
proportional to the height-height fluctuation spectrum, i.e.,
S��Q��kBT /H�q�� �T is the temperature and kB is the Boltz-

mann constant, Q= �q� ,qz� with the wave-vector transfer per-
pendicular to the surface qz�. Deviations of the scattered in-
tensity from the 1 / ��q�

2� power law have been interpreted as
an indication for a wavelength-dependent surface tension.
The deduced wavelength-dependent surface tensions have
then in turn been used to extract surface interatomic poten-
tials from the x-ray scattering data.

On a microscopic level the small-angle-scattering ap-
proach has to break down as the scattering arises from indi-
vidual molecules within the scattering volume which in the
case of capillary waves undergo a circular motion exponen-
tially damped into the liquid material. In this work, we de-
rive expressions for the static structure factor of capillary
waves taking the horizontal correlations and also the vertical
damping of the correlations into account. We show that at
large values of the momentum transfer parallel to the surface
the measured signal is not proportional to the height-height
fluctuation spectra and thus a priori the surface Hamiltonian
is not as easily accessible as anticipated in previous work. It
is also shown that the consideration of the complete
capillary-wave-motion-induced static correlations in the scat-
tering volume has a significant impact on the theoretical de-
scription of scattering intensity, leading to deviations from
the 1 / ��q�

2� power law, even if a constant surface tension is
considered.

II. STATIC STRUCTURE FACTOR

Continuum hydrodynamics describes capillary waves as
displacements u of liquid particles from their respective
equilibrium positions R. The equilibrium positions R de-
scribe the disordered liquidlike distribution of particles that
would result if a bulk liquid was truncated without capillary-
wave excitations. The capillary-wave displacements u de-
scribe a circular particle motion which is exponentially
damped into the liquid material according to exp�−q��z��
where z represents the coordinate vertical to the surface. In a
GID experiment the penetration depth of x rays is typically
10 nm; thus, as soon as q� �0.1 nm−1 only a small portion of
the molecules in the illuminated volume participates in the
wave motion.9 Moreover, as soon as q� �qz the experiment
also projects out the lateral component of the displacement-
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displacement correlations and an increase in scattering inten-
sity is expected. So the conditions of a uniform motion of
material within the entire scattering volume and qz�q�

which are needed for applying the theory of Sinha et al.8 are
not fulfilled in GID experiments at large values of the paral-
lel momentum transfer. �For an extensive overview on how
to include surface-scattering geometry into the scattering
cross section see Ref. 10.�

In order to calculate the scattering from a liquid surface
only fluctuations within the capillary-wave model are taken
into account. Thus density-density fluctuations in the bulk
liquid are not discussed in this work. We start with the defi-
nition of the scattering function in first Born approximation11

S�Q� = �
m=1

N

�
n=1

N

f�Q�2e−iQ·�Rm−Rn��e−iQ·�um−un�	

= �
m=1

N

�
n=1

N

f�Q�2e−iQ·�Rm−Rn��e−iq�·�u�m
−u�n

�−iqz·�uzm
−uzn

�	 ,

�1�

with Q= �q� ,qz�. f�Q� and um= �u�m
,uzm

� denote the atomic
form factor and displacement of the liquid particle, respec-
tively. The summation is over all N molecules in the sample
with the lateral component of R extending from −� to �,
while the vertical component of R extends from −� to 0
only, in order to take the presence of the surface into ac-
count. Note that in contrast to a crystal the components Rm
are statistically distributed representing the molecular struc-
ture of the liquid.

The displacement vector has a component parallel and
perpendicular to the surface with its amplitude exponentially
damped into the liquid material. Using the Baker-Hausdorff
theorem11 for Gaussian fluctuations �ea+b	=e1/2��a2	+�b2	+2�ab	�,
�a2	 for example can be identified as

�a2	 = ��iq� · �u�m
− u�n

��2	 = q�
2�− �u�n

2 	 − �u�m

2 	 + 2�u�m
u�n

	�

and

�ab	 = �− q�qz�u�n
− u�m

��uzn
− uzm

�	 = − q�qz��u�n
uzn

	

− �u�n
uzm

	 − �u�m
uzn

	 + �u�m
uzm

	� .

The static displacement-displacement correlation functions
C�,��z ,z� ,x�= �u��z ,0�u��z� ,x�	 are needed for further treat-
ment and are given for example in Refs. 12–15 from where it
follows that Cxx�x ,z ,z��=Czz�x ,z ,z�� and Cxz�x ,z ,z��
+Czx�x ,z ,z��=0. This means that �ab	=0, which is a direct
consequence of circular motion of the volume elements. The
correlation function Czz is given by Czz�x ,z ,z��
=

kBT

2� 
qmin

qmaxdqq�J0�q�x� /H�q��e−q��z+z�� with the interfacional
Hamiltonian H�q�� and the Bessel function of the first kind
J0�q�x�. qmax is defined by the inverse molecular diameter a,
i.e., qmax=2� /a and qmin=2� /	 is a cutoff due to the limited
coherence length 	 of the photon beam. Thus, the scattering
function can be rewritten as

S�Q� = �
m,n

f2�Q�e−iQ·�Rm−Rn�e−qz
2/2�Czz�0,zn,zn�+Czz�0,zm,zm��


e−q�
2/2�Czz�0,zn,zn�+Czz�0,zm,zm��


eqz
2Czz�xn−xm,zn,zm�+q�

2Czz�xn−xm,zn,zm�. �2�

This result takes both the z dependence of the displacement
correlation function and the lateral component of the
capillary-wave correlation function into account. We come
back to the classical equation8 for surface scattering with
qz�q� and neglecting the z dependence of the correlation
functions.

The ratio between the vertical and lateral components of
the correlation function is given by �qz /q��2 meaning that the
lateral component is only contributing to the scattering signal
when q� �qz. This condition is never matched in x-ray reflec-
tivity or transverse rocking scans where data are collected at
modest values of q�. However, in GID experiments from liq-
uid surfaces this condition is exactly matched at those posi-
tions in reciprocal space where the q-dependent surface ten-
sion is thought to contribute to the scattering signal.
Moreover, in previous analysis of GID experiments it was
assumed that the scattering signal is proportional to the Fou-
rier transform of the height-height correlation function.
However, according to Eq. �2� only the condition �qz

2

+q�
2�C�x ,0 ,0�1 allows to expand the exponentials in Eq.

�2� and guarantees the observation of the Fourier transform

C̃�q� of the correlation functions for the relevant length
scales x. For example for liquid water we find with qz
=0.3 Å−1, q� =0.5 Å−1, and qmin=6
10−5 Å a value of
�qz

2+q�
2�C�x ,0 ,0��2.0 implying that the scattering signal is

not proportional to C̃�q� and the surface Hamiltonian is not
directly accessible. Figure 1 shows �qz

2+q�
2��2 �with qz

=0.3 Å−1� as a function of q�
2 for the surface roughness

of liquid metals, water, and octamethylcyclotetrasiloxane
�OMCTS� as calculated from the respective values of the
surface tension. Apparently we find �qz

2+q�
2��2�1 at the rel-
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FIG. 1. The product of surface roughness and total momentum
transfer as a function of q� given for different surface roughness.
The surface roughnesses are typical values for liquid metals �black
line�, water �dashed�, and liquid alkane �dotted�.
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evant values of the wave-vector transfers for water and
OMCTS.

Within the approximation of continuum hydrodynamics
the surface tension does not depend on the wave vector, i.e.,
H�q��=�q�

2 and we obtain in the limit qminz�1 an analytical
expression for Czz�x ,z ,z��=−�kBT /2���ln�qmin�z+z��
+�x2+ �z+z��2�. With this the scattering function reads

S�Q� = 24�qmin
� 

0

� 
0

� 
0

� � z · z�

z + z� + �x2 + �z + z��2��

e−��z+z��


eiqz�z−z��xJ0�q�x�dxdzdz� �3�

with �=kBT / �2��� · �q�
2+qz

2�. Equation �3� is the static struc-
ture factor of capillary waves taking the full-wave-motion-
induced static correlations into account and represents the
central result of this work. The solution of the integrals in
Eq. �3� is however both analytically and numerically a non-
trivial task. This is why we discuss here two different ap-
proximations: first the vertical damping of capillary waves
will be neglected and second the limit of high-surface-
tension materials will be discussed.

Neglecting the z dependence of the capillary waves and
assuming a constant surface tension � and in the limit qmax
→�, the correlation functions can be approximated as
Czz�x ,0 ,0���−kBT /2�����e+ln�qminx /2�� ��e is Euler’s
constant� and following Ref. 16 allows arriving at an analyti-
cal expressions of the diffuse scattering given by

S�Q� =
2�

qz
2 qmin

−� e−�2�qz
2+q�

2�2
1−�

q�
2−�

��1 − �/2�
���/2�

�4�

with �=kBT / �2����qz
2+q�

2�, which is valid as long as �2.
The divergence of the � function at �=2 is a direct conse-
quence of the divergence of the logarithmic correlation func-
tion in the limit x→0. The square of the surface roughness is
�2=

kBT

2�� ln�qmax /qmin�+
kBT

2���e. Note that due to the crude ap-
proximation of vanishing z damping, Eq. �4� overestimates
the scattered intensity in the vicinity of the critical angle.

Figure 2 shows the scattering signal according to Eq. �4�
as a function of parallel wave-vector transfer. Apparently, the
signal does not follow the simple q�

−2 behavior anymore as
soon as q� �qz. In this region an excess of scattering inten-
sity can be observed which is due to the more pronounced
scattering from the lateral displacement-displacement corre-
lations. At larger wave-vector transfer the increasing Debye-
Waller-type factor decreases the scattering intensity rapidly.
The inset shows the fraction F�Q�=S��Q� /S�Q�, where
S��Q� denotes the small-angle-scattering approximation. The
value F�Q� has been interpreted to be ��q�� /�0 ��0=��q�

=0�� previously and it is obvious that Eq. �4� reproduces the
overall shape of the reported curves quite well. The excess of
scattering intensity in comparison with the small-angle-
scattering expression S��Q� leads to the minimum in F�Q� in
the region q� �qz. The final increase in F�Q� is caused by the
decreasing intensity of S�Q� due to the Debye-Waller-type
factors.

For reasons of comparison experimental values of F�Q�
for water are shown in the inset of Fig. 2 as a dashed line.
The scattering data were taken at the ESRF beamline ID10B
and at DELTA BL9 using a similar setup described in Ref. 1.
The similarity to F�Q� is clearly visible.

The second approximation of Eq. �3� to be discussed ad-
dresses the limit of very-high-surface-tension materials. Here
one encounters the case �qz

2+q�
2��2�1 which is for example

fulfilled for liquid metals. Let us take the example of liquid
gallium which has been measured recently.3 With its rather
high value of the surface tension ��0.7 N /m we find �
�1 Å which results for the q values of interest in �qz

2

+q�
2��2�0.5. With this we can safely expand the exponential

in the scattering function �2� and obtain for the diffuse scat-
tering

S�Q� =  dzdz�e−1/2�qz
2+q�

2��Cxx�z,z,0�+Czz�z�,z�,0��


eiqz�z−z��e−�z+z��/��qz
2C̃zz�q�,z,z�� + q�

2C̃xx�q�,z,z��� ,

�5�

where the penetration depth � is for liquid metals around
30 Å.9 Again the problem cannot be solved analytically;
therefore, we introduce an effective roughness factor �eff and
write

S�Q� =
kBT

2�
e−�qz

2+q�
2��eff

2 qz
2 + q�

2

H�q��
  dzdz�eiqz�z−z��


e−�q�+1/���z+z��, �6�

which results in

S�Q� = e−�qz
2+q�

2��eff
2 kBT

2�H�q��
q�

2 + qz
2

�q� + 1/��2 + qz
2 . �7�

Figure 3 shows Eq. �7� for a fixed value of �eff for different
values of the vertical wave-vector transfer qz. We find that
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FIG. 2. S�Q� from Eq. �4� plotted for different qz values. The
curves are normalized to their first data point. Inset: the fraction
F�Q�=S��Q� /S�Q�. The black dashed line shows F�Q� of water
obtained by a refinement of scattering data using the small-angle-
scattering expression given in Ref. 2. The gray dashed lines repre-
sent the error channel of the refinement.

STATIC STRUCTURE FACTOR OF CAPILLARY WAVES AT… PHYSICAL REVIEW B 78, 235419 �2008�

235419-3



for small values of qz the scattered intensity exceeds again
the q�

−2 behavior. This effect decreases with increasing qz.
The inset shows F�Q� which displays a pronounced q depen-
dence even with the continuum approximation of H�q��
=�0q�

2. For the smallest qz value the curve first increases with
q� before it falls into a minimum at q� =0.5 Å−1. This mini-
mum is less pronounced with increasing qz and finally van-
ishes. There is no minimum in the qz region which has been
investigated by GID experiments previously,3 so one may
conclude that the observed minimum is indeed due to a
lower surface tension at small length scales. However, a sec-
ond interpretation seems possible. Suppose that the damping
of the capillary waves with decreasing depth in the liquid is
less efficient than expected. Introducing a factor � which
describes the efficiency of the damping, the penetration
depth of the capillary waves is 1 /�q�. With this the scattering
law is modified to

S�Q� = e−�qz
2+q�

2��eff
2 kBT

2�H�q��
q�

2 + qz
2

��q� + 1/��2 + qz
2 . �8�

Figure 4 displays S�Q� and F�Q� from Eq. �8� with different
values of the effective damping factor �. Apparently, a lower

value of the depth damping of the capillary waves leads to a
minimum in F�Q� at higher values of qz. For example a
value of �=0.7 increases the penetration depth of the capil-
lary waves at q� =0.1 Å−1 from 10 to 14 Å and at q�

=0.3 Å−1 from 3.3 to 4.7 Å. So for q� =0.3 Å−1 the length
scale probed in the direction parallel to the surface is still
large with 20 Å while the length scales probed in the verti-
cal direction is already at the values of single atoms.

The exact shape of S�Q� is also influenced by the value of
the effective roughness. Figure 5 displays S�Q� and F�Q� for
a fixed value of qz=0.4 Å−1 with different values of the
effective roughness �eff. Obviously, the increase in F�Q� at
large q� values strongly depends on the value of the effective
roughness. A large �eff reduces the scattered intensity via the
Debye-Waller-type factor and in turn leads to a significant
increase in F�Q� at large q�. Both approximations to Eq. �3�
show that the static scattering cross section of capillary
waves at large momentum transfers parallel to the surface is
different from the small-angle-scattering expression used
previously to analyze GID data from liquid surfaces.

III. SUMMARY

For liquids with low surface tensions such as, e.g., water
the scattering cross section and consequently the scattered
intensity in a GID measurement at large values of q� is not
proportional to the Fourier transform of the height-height
correlation function. The surface Hamiltonian is thus not di-
rectly accessible with surface-scattering experiments for
those liquids and the existence of a wave-vector-dependent
surface tension cannot be claimed. In the case of liquid met-
als the scattering signal is a mixture of height and lateral
fluctuations and the surface Hamiltonian is in principle di-
rectly accessible. However, the exact shape of H�q�� strongly
depends on the parameters used in the analysis such as sur-
face roughness and the depth damping of the capillary
waves. Our results have implications for the interpretation of
x-ray scattering data from all soft matter interfaces if an un-
derstanding in the nanometer regime is desired.
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FIG. 3. S�Q� for liquid metals according to Eq. �7�. The curves
are normalized to their first data point. Inset: the fraction F�Q�
=S��Q� /S�Q�.
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�qz=0.4 Å−1 and �eff=0.8 Å�. The curves are normalized to their
first data point. Inset: the fraction F�Q�=S��Q� /S�Q�.

10
−2

10
−1

10
0

10
110

−6

10
−4

10
−2

10
0

10
2

10
4

S
(Q

)
(a

rb
.u

ni
ts

)

q
||

(Å−1)

σ=0.2 Å
σ=0.4 Å
σ=0.6 Å
σ=0.8 Å
σ=1.0 Å

10
−2

10
−1

10
0

10
10

1

2

3

4

5

F
(Q

)
(a

rb
.u

ni
ts

)

FIG. 5. S�Q� for liquid metals with different values of the ef-
fective surface roughness �eff for qz=0.1 Å−1. The curves are nor-
malized to their first data point. Inset: the fraction F�Q�
=S��Q� /S�Q�.

PAULUS, GUTT, AND TOLAN PHYSICAL REVIEW B 78, 235419 �2008�

235419-4



ACKNOWLEDGMENTS

The authors acknowledge the ESRF for providing syn-
chrotron radiation facilities and the DELTA machine group
for providing the synchrotron radiation and technical sup-
port.

APPENDIX: DISPLACEMENT-DISPLACEMENT
CORRELATION FUNCTIONS

The displacement-displacement correlation function is de-
fined as C�,��z ,z� ,x�= �u��z ,0�u��z� ,x�	, where x is the co-
ordinate parallel to the surface and z perpendicular to the
liquid surface. Explicit expressions for the correlation func-
tions have been obtained with the help of linear-response
theory14,15 yielding the dynamic susceptibilities
����q� ,z ,z� ,��. The fluctuation dissipation theorem then al-
lows calculating the static displacement-displacement corre-
lation function via the real part R of the static susceptibility:
C�,��z ,z� ,x�=kBT
dq�

2eiq�xR����q� ,z ,z� ,�=0�.
For the case z=z�=0 we find

Cx,x�0,0,x� = Cz,z�0,0,x� =
kBT

2��


0

�

dq
q

qg
2 + q2J0�qx�

�A1�

=
kBT

2��
K0�qgx� , �A2�

where K0 is the modified Bessel function of the second kind.
qg

2=�g /� is the gravitational cutoff with � being the density
of the liquid and g the gravitational constant. This result has
some useful properties for calculating the x-ray scattering
cross section. However, due to the limit K0�qgx�→� for x

→0 the scattering cross section contains singularities in re-
ciprocal space.17 The singularities can be avoided by intro-
ducing an upper limit qmax within the integral17

Cx,x�0,0,x� = Cz,z�0,0,x� =
kBT

2��


0

qmax

dq
q

qg
2 + q2J0�qx�

�A3�

=
kBT

2��
�qmax

qg
�2

�
k=0

�
�− 1�k

��1 + k� 2F1


�1;1 + k;2 + k;− qmax
2 /qg

2��qmaxx

2
�2k

, �A4�

where 2F1 is a regularized hypergeometric function.
For the case z ,z��0 we approximate the correlation func-

tion according to

Cx,x�z,z�,x� = Cz,z�z,z�,x� =
kBT

2��


qmin

�

dq
J0�qx�

q
e−q�z+z��

�A5�

=−
kBT

2��
ln�qmin�z + z�� + �x2 + �z + z��2�

+ C + O�qmin�z + z��� �A6�

�−
kBT

2��
ln�qmin�z + z�� + �x2 + �z + z��2� , �A7�

which is valid as long as qmin�z+z���1.
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